Advanced Exploration Technology & Concepts: Key to Future Gulf of Mexico Deep Shelf Oil & Gas

Dwight "Clint" Moore & Michael Neese with Rich Heaney, Bill Lefler, & Tom Uphoff

GCAGS 2014 – Lafayette, LA October 6 2014

Shelf Miocene Sub-Salt Play Area

Exploring a Proven Petroleum System

400+ MMboe were discovered in the 1990s in the Shelf Miocene Sub-Salt play

2001

2004

Shelf Miocene Sub-Salt Target Section

Evolution of the Shelf Miocene Sub-Salt Play

The play was 1st produced in the 1990's but older technology left potential giant fields behind

Thick sand below salt discovered by accident• SMI 200 well discovered 1000' of thick reservoir sand below an unexpected salt sheet, in late 1985	 Seismic advances lead to massive discoveries in deepwater GoM, followed globally (Brazil, West Africa, East Africa, and others) Extensive R&D spending on sub-salt imaging & drilling due to global "size of the prize" 	 GulfSlope Captures Leading Lease Position Industry applies RTM to Shelf Miocene Sub-Salt play GulfSlope acquires a leading position in the Shelf Miocene Sub-Salt play
- 1990 - Shelf Miocene Sub Play 1 st Developed	- 2000 - -Salt Sub-Salt Seismic Successful in deepwat	- 2010 - Deepwater Technology er Re-applies to the Shelf
Mahogany discovered in 1993, with 400+ MMboe discovered in play by 2000	 Shelf Miocene Sub-Salt Exploration Limited by Seismic Clarity Early sub-salt seismic has difficulty with GoM shelf Play limited by drilling depth capabilities 	 Seismic Advancements New Reverse Time Migration (RTM) more accurately images sub-salt RTM and other technologies proven successful in sub-salt deepwater GoM, Brazil,

Dynamic Salt & Sediment Model

Heaney 2014

Observed Trap Styles in Play Area Today

15+ Sequences - Lowstand Sand Potential

mya Sequences Primary Zones		a Primary Zones	Sub Epoch
	- mya	M1	
7:83-		M1A	LIPPER
9	•	M2	
		M3	MIOCENE
10.97		M4	
11:8	12	M5	MIDDLE MIOCENE
12.2 -		M6	
	1	M7	
14.9	15		
	1	M8	
	,,	M9	
17.55 -	-	M10	LOWER MIOCENE
	20		
20.9	21	M11	

Miocene Deltas Feed Salt-Supported Extended-Slope Creating Confined Mini-Basins

Miocene Subsalt Pay Sands - Slope Fans + Basin Floor Fans

Gul-Slope

Advanced Seismic Technology Better Imaging at Lower Cost

- Technology Evolution
 - Seismic Processing
 - Faster, better and cheaper processing techniques
 - Advanced processing yields the most accurate view of subsalt prospects
 - Algorithm Evolution
 - 1990s: Kirchhoff
 - 2000s: WEM and Beam migration
 - Today: RTM

Seismic Processing Improvements

Why this Opportunity Still Exists Today...

Legacy: WEM Processing

Modern: RTM Reprocessed

Previous generations of seismic subsalt images were often unclear Recent advances in seismic processing provide clearer images

Mahogany Simplified Structure Map

Geophysical Advantage of Play

Advanced Seismic Technology now allows us to find Deepwater Size Prospects in Shallow Water

Geologic Advantages of Play

- High Porosity-Permeability Miocene Sand Reservoirs
- Slope Fans & Amalgamated Channels Confined Mini-Basin Geometries
- 5 Key Fields Conger, Mahogany, Hickory, Tanzanite, Enchilada
- Proven Petroleum System High Volumes Liquid Oil and/or Condensate
- New & Advanced Seismic Processing Clarifies Sub-Salt Imaging

Economic Advantages of Play

- Moderate Drill Depths 15,000' 25,000' Good pressure drives
- Mostly Jack-up Rig Access \$ 125-175K/day \$ 40-60 MM per wildcat
- Mostly Conventional Platforms \$40-75 MM per platform
- Existing Platform-Pipeline Infrastructure across area

Emerging Shelf Play = Shelf Miocene Sub-Salt Play

Acknowledgements

The Authors would like to thank their fellow members of the GulfSlope Geoscience team, and especially Sheila Wilkins Bruce.

We also gratefully acknowledge Petroleum Geo-Services ASA (PGS) and TGS-NOPEC Geophysical Company ASA (TGS) for their permission to display their geophysical data in this presentation.

